News

News

Industry News|New method promises advances in 3D printing, manufacturing and biomedical applications

Date: 2019-10-30
Views: 341

In a development offering great promise for additive manufacturing, Princeton University researchers have created a method to precisely create droplets using a jet of liquid. The technique allows manufacturers to quickly generate drops of material, finely control their size and locate them within a 3D space.


Although both 3D printers and traditional manufacturers already use droplets to carefully add material to their products, the new jet method offers greater flexibility and precision than standard techniques, the researchers said. For example, delivering droplets with jets allows for extremely small sizes and allows designers to change droplet sizes, shapes and dispersion, as well as patterns of droplets, on the fly.


'A key aspect is the simplicity of the method,' said Pierre-Thomas Brun, an assistant professor of chemical and biological engineering at Princeton and the lead researcher. 'You draw something on the computer, and you can create it.'


The researchers describe how to control the dispersion of drops from a thin jet of liquid. They were able to inject calibrated droplets of glycerin into a liquid polymer to demonstrate placement over three dimensions -- a key requirement for manufacturing. By curing the polymer, the researchers were able to affix the droplets in desired locations. Although the researchers used glycerin for the experiment, they said the method would work with a wide variety of substances commonly used in manufacturing and research.


The method is scalable and can be adjusted to work with a wide range of printing patterns, the researchers said. The jets can be controlled to disperse drops in lines or in sinusoidal wave patterns, creating flexibility in manufactured forms.


The researchers said that the technique could be applied to applications including the creation of biomedical scaffolding, acoustic materials and bio reactors as well as standard 3D manufacturing.


The researchers said the method also relieves designers of the need to constantly adjust and fine-tune their machines to create varied shapes and sizes. Because the mathematics controls the dispersion of the droplets, it is easy to make changes to fit a project's requirements.


'Our approach is robust in the sense that all we do is draw the jet and the drops arrange themselves,' Brun said. 'I think it is easier and maybe more versatile that current methods.'


Via: https://www.sciencedaily.com


News / Recommended news More
2020 - 01 - 22
Shipments of industrial-class 3D printers (priced above $100,000) were up by more than 8% in Q3 2019 compared with the same period the previous year, according to market intelligence from Context (London). This key sector, which accounted for almost 70% of all 3D printer revenues for the period, saw even more impressive shipment growth of 12% on a trailing 12-month basis.“The increase came as a su...
2020 - 01 - 16
Researchers at RMIT have found that sound vibrations can improve the micro-structure of 3D printed alloys.The team used high frequency sound waves to make the alloys more consistent and stronger than those printed conventionally. Lead author, Carmelo Todaro, highlighted that the method deals with inconsistencies in 3D printed alloys.“If you look at the microscopic structure of 3D printed alloys, t...
2020 - 01 - 10
The U.S. Army has demonstrated its interest in additive manufacturing over the years, but according to service secretary Ryan McCarthy, it’s now time to really ramp up adoption. At a recent press event at the Reagan National Defense Forum, McCarthy emphasized how crucial 3D printing will become to the military, especially for the production of spare parts.Presently, the U.S. military is using addi...
Share:
Uniris Exhibition Shanghai Co., Ltd.
Shanghai Branch 
Tel: 4000 778 909 
E-mail:irisexpo@163.com
Guangzhou Branch
Tel:020-8327 6389
Email:pmchina@unifair.com
PM CHINA Official Website
犀牛云提供企业云服务
Scan the QR code to visit the official website by phone