News

News

Industry News | Scientists Use a Little Math to Print the Strongest Kind of Steel

Date: 2020-04-24
Views: 231

Industry News | Scientists Use a Little Math to Print the Strongest Kind of Steel


Scientists from Texas A&M University and the U.S. Air Force say they’ve developed a way to 3D print the strongest kind of steel, along with many other metals.


By using a steel powder melted into place by a laser, this process follows in the footsteps of technologies like powder welding. And by adding a mathematical model to gauge which laser settings will best reduce printing flaws, the researchers have made a process they say makes strong steel into strong 3D-printed steel items.


The mathematical model and its results are presented as an “optimization framework” that anchors the research team’s new paper.


“This framework utilizes the computationally inexpensive Eagar-Tsai model, calibrated with single track experiments, to predict the melt pool geometry,” the team writes. “Computationally inexpensive” means the mathematical model doesn’t require a lot of processing juice. Using this term usually indicates the new idea is an alternative that saves a ton of time compared to a traditionally iterating or permutating algorithm that can take, well, almost forever.


The results were striking right away. The team used its framework on a selective laser melting (SLM) additive sample made from an especially corrosion-resistant steel called AF9628. From the paper's abstract:


“Using this framework, fully dense samples were successfully fabricated over a wide range of process parameters, allowing the construction of an SLM processing map for AF9628. The as-printed samples displayed tensile strengths of up to 1.4 GPa, the highest reported to date for any 3D printed alloy.'


Why does introducing math make the steel so much stronger? The answer lies in some facts about steel itself and about 3D printing in general. The steel these researchers focus on, named martensite steel after the inventive 19th-century metallurgist Adolf Martens, is made in a process where extreme cooling traps carbon inside the structure of the steel. The overall category “carbon steel,” like a pan or car parts or the sharpest cutting implements, includes all martensite steels but is not exclusively martensite steels.


Carbon steels can already be quite brittle, and the techniques used in additive manufacturing—the technical term for 3D printing—can introduce flaws called porosities. “Porosities are tiny holes that can sharply reduce the strength of the final 3D-printed object, even if the raw material used for the 3D printing is very strong,” researcher Ibrahim Karaman explained.


And to minimize porosities, the researchers used the large existing body of research about powder and other kinds of welding, where metal powder is heated to form the bonding agent between two pieces of metal. By varying the number of laser pulses per second and the power of the laser itself, the researchers adapted a welding model to begin developing and fine-tuning their 3D printing model. In subsequent iterations, they continued to tune, until their final model could tell in advance if certain settings would work well or not.


This means steel manufacturers could save development time and wasted materials they might burn through while doing their own experiments with 3D printing—or, more likely, it could lure them into the realm of 3D printing at all. Adding ultrahard carbon steel to the 3D printing repertoire could be a huge boon for the industry, from the most established old companies to rocket-printing startups.


Via: https://www.popularmechanics.com/

Note: Content may be edited for style and length.





News / Recommended news More
2020 - 05 - 14
Ceramic 3D printing can be used in preparation of multifunctional ceramics with complex structure and high precision, and will be widely used in architecture, engineering, medicine, aerospace and more. In recent years, metal and plastic 3D printing companies is shifting to the ceramic materials field that has increasing demand for strong, tough and high temperature resistant parts, which promotes ...
2020 - 05 - 14
Advanced ceramics are widely applied in industry sectors, high-tech world and new industries. With annual growth rate of 8%, its market in China values hundreds of billions of CNY. In recent years, the acceleration of China’s high-end industries and new industries development, for example, advanced manufacturing, 5G communications, semiconductor equipment and chip packaging, 3D printing and new en...
2020 - 05 - 14
The East China Powder Metallurgy Technology Exchange Meeting, rotationally presented by the powder metallurgy societies in East China, has been successfully held for 17 years since 1982. It’s considered as one of the important platforms for China's powder metallurgy industry exchanges, and has actively promoted the flourishing development of the industry and related industries in East China and ev...
2020 - 05 - 14
MIM is currently the most scientific near net shape forming technology for metal parts formation. It can flexibly adjust to various performance indexes and has been successfully applied to popular areas such as auto parts, 3C digital, medical equipment and tool locks. Hence, traditional molding technologies such as CNC fine processing, to some extent, are being replaced. Although the future of MIM...
Share:
Uniris Exhibition Shanghai Co., Ltd.
Shanghai Branch 
Tel: 4000 778 909 
E-mail:irisexpo@163.com
Guangzhou Branch
Tel:020-8327 6389
Email:pmchina@unifair.com
PM CHINA Official Website
犀牛云提供企业云服务
Scan the QR code to visit the official website by phone